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1 Introduction

QMBF is an application with a graphical user interface intended for correlated least-χ2 fitting of
Euclidean two-point and three-point functions in lattice field theory. QMBF allows both unconstrained
fits and Bayesian fits with Gaussian priors for the fit parameters. The program comes with a wide
range of pre-defined types of model functions and also a parser which can interpret custom functions
entered as standard text. An accompanying command-line program called MBF is also available. MBF
can read a previously saved QMBF session file and perform the corresponding fit / bootstrap without
the need for a graphical environment.

2 Fit Algorithm

QMBF supports simultaneous fitting of an arbitrary number of real-valued model functions, which
may share some common fitting parameters. Let the K model functions be

{fk(x, a)}k=1,...,K (1)

with V variables x = (x1, ..., xV ) and P fitting parameters a = (a1, ..., aP ). Of course, it is not required
that all K functions depend on all P parameters – each function can depend on a different subset.

We assume that there are N sets of M data points

ykn(xm) ≡ y(n, m, k) (2)

with n = 1...N , m = 1...M , i.e. in a lattice QCD context the index n would label the gauge configu-
ration, while m might label sites on the lattice (e.g. the sink time slice of a 2-point correlator).

The algorithm works as follows: First, the average

y(m, k) =
1

N

N∑
n=1

y(n, m, k) (3)

and the data covariance matrix1

C(m,k),(m′,k′) =
1

N(N − 1)

N∑
n=1

[y(n, m, k)− y(m, k)]
[
y(n, m′, k′)− y(m′, k′)

]
(4)

are computed. The χ2 function to be minimized is then defined as

χ2(a) =
∑

(m,k),(m′,k′)

W(m,k),(m′,k′)

[
y(m, k)− fk(xm,a)

] [
y(m′, k′)− fk′(xm′ ,a)

]

+
P∑

p=1

(ap −Ap)
2

σ2
Ap

, (5)

where, depending on the chosen settings, W is either equal to C−1 (full inverse of data covariance
matrix C), or a truncated inverse of C (see Sec. 2.1). The second term in (5), which contains the
parameter priors Ap and their widths σAp , is only added if the user activates the Bayesian constraints.
In addition to the terms shown in this section, QMBF also allows an arbitrary additional function of
the paramaters to be added to the definition of χ2 (see Sec. 4.5).

1The normalization 1/(N(N − 1)) is the default choice. See Sec. 4.4 for an option to change this.
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QMBF uses the Levenberg-Marquardt method for minimization. It requires the derivatives of χ2

with respect to the parameters:

∂χ2

∂ap
= −2βp (6)

∂2χ2

∂ap∂ap′
= 2αp p′ (7)

with

βp(a) =
∑

(m,k),(m′,k′)

W(m,k),(m′,k′)
∂fk(xm,a)

∂ap

[
y(m′, k′)− fk′(xm′ ,a)

]
− ap −Ap

σ2
Ap

, (8)

αp p′(a) =
∑

(m,k),(m′,k′)

W(m,k),(m′,k′)
∂fk(xm,a)

∂ap

∂fk′(xm′ ,a)

∂ap′
+

δp p′

σ2
Ap

−
∑

(m,k),(m′,k′)

W(m,k),(m′,k′)
∂2fk(xm,a)

∂ap∂ap′

[
y(m′, k′)− fk′(xm′ ,a)

]
(9)

With some λ > 0, a new matrix α̃ is defined by

α̃p p = (1 + λ)αp p (10)

α̃p p′ = αp p′ (p ̸= p′). (11)

With the starting parameters a and an initial value for λ, say λ = 0.001, the iteration proceeds as
follows:

1. Solve
P∑

p′=1

α̃p p′(a) δap′ = βp(a) (12)

for δa

2. If χ2(a + δa) ≥ χ2(a), set λ = bλ with b ∼ 10, and go back to 1, otherwise set λ = λ/b, set
a = a+ δa and go back to 1.

The procedure is stopped on the first occasion of χ2 decreasing by less than some very small amount,
say 10−3. Then, the parameter covariance matrix

[α−1(a)]p p′ . (13)

is computed. The standard error estimate for parameter ap is then given by
√
[α−1(a)]p p.

Note that αp p′(a) has a contribution with second derivatives of the model functions fk, shown in

(9), which is typically small for a good fit because of the factor
[
y(m′, k′)− fk′(xm′ ,a)

]
. QMBF allows

the user to choose whether this term will be included by the fitter or replaced by zero (see Sec. 4.4).
This choice can be made separately for the minimization process and for the final computation of the
parameter covariance matrix.
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2.1 Truncated inverse of data covariance matrix

2.1.1 Singular value decomposition

If the user chooses one of the “SVD” settings (see Sec. 4.4), the singular value decomposition of C is
calculated,

C = U S V T , S = diag(σ1, ..., σD) σ1 ≥ σ2 ≥ ... ≥ σD ≥ 0, UUT = V V T = 1 (14)

(here, D = M ·K), and the matrix W in (5) is defined as follows, with some D′ < D:

W = (U S′ V T )−1 = V S′−1 UT , S′−1 = diag(σ−1
1 , ..., σ−1

D′ , 0, ..., 0︸ ︷︷ ︸
D−D′

). (15)

The number of singular values D−D′ which are eliminated is referred to as the “SVD cut”. It is either
specified directly by the user, or chosen based on the size of the singular values (see Sec. 4.4).

2.1.2 Diagonal approximation (uncorrelated fit)

QMBF also provides an option to ignore the off-diagonal entries of the data covariance matrix C. If
the user chooses this setting, the matrix W used in (5) is taken to be

W = diag(1/C11, 1/C22, ..., 1/CDD). (16)

This corresponds to an uncorrelated fit.

3 Data File Format

3.1 Text format

QMBF can read text (“ASCII”) data files in a particular format, which contains a header in addition
to the actual data. The files must have the entries as shown in Table 1, with the notation from section
2. The first 4 lines contain the integers K, V , M , and N in this order. Then follows a block which
specifies the arguments xm ∈ RV . Finally, there are the N blocks with the data (e.g. for the N gauge
configurations in lattice QCD).

3.2 Binary Format

A binary data file consists of a stream of 32 bit little endian floating point numbers. The storage order
is similar to the text format, except that the indices are omitted in order to reduce the file size. That,
is the file has the following content (all stored as floating point numbers, including K, V , M , N):

K, V , M , N , x11, x
2
1, ..., x

V
1 , x12, x

2
2, ..., x

V
2 , ... , x1M , x2M , ..., xVM ,

y11(x1), y
2
1(x1), ..., y

K
1 (x1), y11(x2), y

2
1(x2), ..., y

K
1 (x2), ... , y11(xM ), y21(xM ), ..., yK1 (xM ),

y12(x1), y
2
2(x1), ..., y

K
2 (x1), y12(x2), y

2
2(x2), ..., y

K
2 (x2), ... , y12(xM ), y22(xM ), ..., yK2 (xM ),

...
y1N (x1), y

2
N (x1), ..., y

K
N (x1), y1N (x2), y

2
N (x2), ..., y

K
N (x2), ... , y1N (xM ), y2N (xM ), ..., yKN (xM ).
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K
V
M
N

1 x11 x21 ... xV1
2 x12 x22 ... xV2
...

...
M x1M x2M ... xVM
1 1 y11(x1) y21(x1) ... yK1 (x1)
1 2 y11(x2) y21(x2) ... yK1 (x2)
...

...
1 M y11(xM ) y21(xM ) ... yK1 (xM )

2 1 y12(x1) y22(x1) ... yK2 (x1)
2 2 y12(x2) y22(x2) ... yK2 (x2)
...

...
2 M y12(xM ) y22(xM ) ... yK2 (xM )
...

N 1 y1N (x1) y2N (x1) ... yKN (x1)
N 2 y1N (x2) y2N (x2) ... yKN (x2)
...

...
N M y1N (xM ) y2N (xM ) ... yKN (xM )

Table 1: QMBF “Text” data file format
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4 QMBF

4.1 Compiling QMBF

4.1.1 Software Requirements

• For OS X, the necessary developer tools can be obtained for example by installing Apple Xcode.

• Qt version 4.x. On most Linux distributions, this is already installed or available through the
package management. Note that the development packages are also needed (these usually have
-dev or -devel in the package name). Free open source editions for Linux/X11, OS X and
Windows are also available from http://qt-project.org/

• GNU Scientific Library, version ≥ 1.13 (see http://www.gnu.org/software/gsl/). On most linux
distributions this is available through the package management. Note that the development
packages are also needed (these usually have -dev or -devel in the package name). For OS X,
installation via http://www.macports.org/ is recommended.

• For built-in plotting functionality: Grace (see http://plasma-gate.weizmann.ac.il/Grace/). On
most linux distributions this is available through the package management. For OS X, installation
via http://www.macports.org/ is recommended.

4.1.2 Adjusting QMBF.pro (if necessary)

This step is only necessary if libraries such as the GNU Scientific Library are installed in unusual
locations (in the following example, /path/to/mylib and /path/to/myinclude). In this case, go to
the directory with the QMBF source code, and add the following lines at the end of the file QMBF.pro,
for each library where needed:

LIBS += -L/path/to/mylib

QMAKE_CXXFLAGS += -I/path/to/myinclude

4.1.3 Compiling on Linux

From the directory with the QMBF source code, run

qmake

(the qmake program is part of Qt). This generates a Makefile suitable for the system. Then run

make

This will produce an executable file called QMBF.

4.1.4 Compiling on OS X

From the directory with the QMBF source code, run

qmake -spec macx -g++

(the qmake program is part of Qt). This generates a Makefile suitable for the system. Then run

make

This will produce an application folder called QMBF.app.
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4.2 Running QMBF

QMBF takes as optional command-line argument the name of a mbf file to be opened (see Sec. 4.6.1
for information on QMBF session files):

4.2.1 Running on Linux

QMBF [inputfile.mbf]

4.2.2 Running on OS X

open QMBF.app [inputfile.mbf]

Alternatively, after .mbf files have been associated with QMBF, use

open inputfile.mbf

4.3 Model Functions, Variables, and All That

4.3.1 User-defined Models

QMBF allows the user to enter model functions as text. To activate the user-defined mode, select
“User-defined Model” in the “Model” menu. Parameters, constants and variables are alpha-numeric
strings, must not contain spaces, and must not begin with a number. However, the underscore “_”
may be used. The Functions may contain the following built-in operations:

+, -, *, /,

(, ),

exp(...), log(...),

sin(...), cos(...), tan(...),

sinh(...), cosh(...), tanh(...),

arcsin(...), arccos(...), arctan(...),

sqr(...), sqrt(...),

alt(...).

The function alt, which alternates between -1 and +1, is defined as follows:

alt(x) = (−1)int(x)

where int(x) gives the integer part of x (as in C++). Because alt(x) is not differentiable, x should
not contain fit parameters (only variables and constants).

In the Tab “Model Functions” the user can select the number of functions K, and enter the functions
(as strings) themselves. The variable names and their respective fitting ranges must be entered in the
Tab titled “Variables / Fitting Ranges”. The total number of fit parameters (P ) is selected in the
“Parameters/Derivatives” Tab of QMBF. For each parameter, the parameter name must be entered.
If numerical differentiation for the first-order derivatives is disabled (see Sec. 4.4), additionally the
first-order derivatives of all functions with respect to that parameter must be entered, expressed using
the same available built-in operations as above (second-order derivatives, if needed, will always be
calculated numerically).
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Also selected in the “Parameters/Derivatives” Tab is the number P ′ ≤ P of parameters to be
subtracted from the number of degrees of freedom (M · K) when calculating the χ2 per effective
degrees of freedom2

χ2

dof
=

χ2

M ·K − P ′ .

For non-Bayesian fits, the default value is P ′ = P , while for Bayesian fits, the default value is P ′ = 0.
Optional constants and their values for use in the functions and derivatives may be defined in the

Tab “Constants”.

4.3.2 Predefined Models

Alternatively, the user can choose among commonly used predefined types of model functions via
the other entries in the menu “Model”. For the predefined models, the derivatives are implemented
internally and will not be shown in the “Parameters / Derivatives” Tab. The internal implementa-
tion of the derivatives is exact up to machine precision. If the “Numerical differentiation” option (see
Sec. 4.4) is enabled, the built-in implementations of the derivatives are not used, and the derivatives
are approximated using discrete differences of the model functions instead.

The complete list of predefined model types can be found in appendix A.

4.4 Fit Settings Tab

The Tab “Fit Settings” contains input fields that control the fit algorithm. These settings apply for all
types of fit models.

The user can activate or deactivate the Gaussian priors by clicking on “Activate Bayesian con-
straints”. For the option “Use Gaussian random priors for bootstrap / multifit”, see sections 4.6.6 and
4.6.7.

When “Use numerical differentiation for first derivatives” is activated, the first-order derivatives in
Eqs. (8) and (9) are approximated using a symmetric difference operation, using

∂fk(xm; a1, ..., aP )

∂ap
≈ fk(..., ap + h, ...)− fk(..., ap − h, ...)

2h
. (17)

The option “Use numerical differentiation for first derivatives” is intended mainly for the user-defined
models (Sec. 4.3.1), to avoid the need of entering the symbolic derivatives by hand. The predefined
fit models (Appendix A) have built-in symbolic implementations of the first-order derivatives, and for
those it is normally recommended to disable this option.

The step size h used in (17) can also be specified by the user in the input field “Numerical dif-
ferentiation step size”. Note that making the steps size too large may give a poor approximation
of the derivative, while making it too small may cause significant round-off errors. Because QMBF
uses double-precision floating-point arithmetic, the default value h = 10−8 is thought to be a good
compromise between the two possible causes of error. To be safe, the user should check that the fit
results are independent of the step size to the desired precision (or compare the results to the case
where numerical differentiation is disabled and the symbolic derivatived are entered by hand in the
“Parameters/Derivatives Tab”).

The options “Use second derivatives for parameter covariance matrix” and “Use second derivatives for
minimization” control whether the term with the second derivatives of the model functions fk, shown
in (9), is included in the calculation of αp p′ or is replaced by zero. The first option only affects the

2If an SVD cut is used, M ·K is replaced by D′, as defined in Sec. 2.1.1.
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final calculation of αp p′ after the minimum of χ2 was found. Hence, it affects the parameter covariance
matrix [α−1]p p′ , but not the central values of the fitted parameters. It is recommended that this option
be enabled in order to get the most accurate estimate of the parameter covariance matrix. Conversely,
the second option only affects the intermediate calculations of α̃p p′ during the search for the minimum
of χ2. It is usually recommended that this option be disabled, because it may destabilize the iterations.

The second derivatives of the model functions, if enabled, will always be computed numerically. If
the option “Use numerical differentiation for first derivatives” is disabled, the second derivatives will be
calculated using

∂2fk(xm; a1, ..., aP )

∂ap ∂aq
≈

∂aqf
k(..., ap + h, ...)− ∂aqf

k(..., ap − h, ...)

2h
, (18)

where ∂aqf
k are the symbolic first-order derivatives (either from the built-in models, or entered by the

user for a user-defined model).
On the other hand, if the option “Use numerical differentiation for first derivatives” is enabled, the

second derivatives will be calculated using

∂2fk(xm; a1, ..., aP )

∂ap ∂aq
≈ 1

4h′2

[
fk(..., ap + h′, ..., aq + h′, ...)− fk(..., ap + h′, ..., aq − h′, ...)

− fk(..., ap − h′, ..., aq + h′, ...) + fk(..., ap − h′, ..., aq − h′, ...)

]
,

(19)

where the new step size h′ =
√
h is used to minimize round-off errors. Note that (18) is numerically

more precise than (19).
The Fit Settings tab also contains input fields for the starting value for λ, the lambda factor b,

the tolerance for decreases in χ2 at which the iteration stops, and the maximum number of fitting
iterations. See Sec. 2 for the meaning of these parameters.

The selector “Normalization of covariance matrix” specifies whether the data covariance matrix C in
Eq. (4) is defined with the usual factor of

1

N(N − 1)
,

(as shown in (4)) or alternatively with the factor

1

N − 1
.

The latter is needed to get the correct error estimates for fit parameters for the case that the original
data file was created using bootstrap over data sets (e.g. in the calculation of ratios of three-point and
two-point functions).

The selector “(Pseudo-)Inversion method for data covariance matrix” controls the definition of the
matrix W in Eq. (5). The options are:

• “LU decomposition”: full inversion, W = C−1

• “SVD with fixed cut”: truncated inversion (see Sec. 2.1.1), remove given number D − D′ of
smallest eigenvalues
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• “SVD with EV ratio cut”: truncated inversion (see Sec. 2.1.1), remove eigenvalues that are
smaller than the specified fraction of the largest eigenvalue σ1

• “SVD with EV value cut”: truncated inversion (see Sec. 2.1.1), remove eigenvalues smaller than
some given value

• “Diagonal only (uncorrelated fit)”: keep only diagonal elements in data covariance matrix (see
Sec. 2.1.2)

The option “Restrict data range” lets the user choose a restricted range for the data index n
(cf. Sec. 2), allowing the analysis of only a subset of the data.

Additionally, the user can set a bin size, let us call it B, to reduce autocovariances. This means
that before the steps from section 2 are applied, the data sets are grouped bins of size B, and within
each bin the average is taken. If N (or what is left after restricting the data range) is not an integer
multiple of B, the remaining data sets which would not completely fill a bin are ignored.

Finally, the user can enter the number of samples to be created for the bootstrap procedure, or
select/generate an external file (“bootstrap ensemble file”) containing the information needed for the
random sampling of configurations. See Sec. 4.6.6 for more information on this.

4.5 Additional term in chi sqr

The Tab “Additional term in chiˆ2” can be used to add an arbitrary function of the fit parameters to
χ2. This option is only intended for special applications, for example forcing two fit parameters to be
close to each other by adding the square of their difference, divided by some width, to χ2.

The elementary operations that can be used for defining such a function are the same as in Sec. 4.3.1.
The function may contain any of the fit parameters defined in the Parameters/Derivatives Tab. However,
the constants from the “Constants” tab can not be used here. Instead the “Additional term in chiˆ2”
tab provides the option of defining new constants solely for use in this additional term in χ2.

QMBF always computes the first and second derivatives of this additional function (as needed by
the Levenberg-Marquardt algorithm) numerically. The step size used for this differentiation entered
here is independent from that entered in the Fit Settings tab (Sec. 4.4).

4.6 The Main Tab

4.6.1 Opening and Saving mbf Files

Using the “File” Menu (or the toolbar), the user can open and save .mbf files, which contain all session
settings of the graphical user interface, i.e. model functions, starting values, fitting ranges, plot settings
etc.

4.6.2 Selecting a Data File

A data file name including the full path can be entered in the input field labelled “Data file”, or selected
using a file open dialog by clicking the button next to the input field. The file will only be loaded when
necessary for the fit.

4.6.3 Selecting an Output Directory

The output directory is used for plotting, for saving the fitted parameters and their covariance matrix,
and for bootstrap.
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4.6.4 Setting the Start Parameters, Priors and Prior Widths

The table in the middle of the main Tab allows the user to enter starting values for the fit parameters,
and, if activated (see section 4.4), the central values of the Gaussian priors Ap and their widths σAp .

4.6.5 Fitting

To start the fit, click on the botton “Start fit”. While the fit is performed, the values of χ2/dof and λ
are shown after every iteration.

4.6.6 Bootstrap

When clicking on the button “Start bootstrap”, QMBF will perform repeated fits for a selected number
of “bootstrap samples”. Each bootstrap sample is obtained by randomly choosing N out of the N
configurations with allowed repetitions. QMBF will recompute and invert the data covariance matrix
for every single bootstrap sample. QMBF will write the ensembles of fit results for each parameter
into an individual file located at the specified output directory (cf. 4.6.3). The files are named after
the current .mbf session file (see section 4.6.1) and the parameter names. When the bootstrap is
completed, the bootstrap error estimates (based on the 68% range) of the fit results are shown next to
the fit results.

By default, the random numbers of configurations are generated by QMBF just before doing the
bootstrap. Alternatively, if the option “Use bootstrap ensemble file” is activated in the “Fit Settings”
Tab, the numbers are read from a text file. The format of a bootstrap ensemble file is as follows: the
number of bootstrap samples S, followed by the number of configurations N , followed by S ·N random
integer numbers in the range 1...N . Such files can also be generated by QMBF, by clicking on the
corresponding button in the “Fit Settings” Tab.

For Bayesian fitting, it is recommended to activate the option “Use Gaussian random priors for
bootstrap / multifit” in the “Fit Settings” Tab, in order to get the (approximately) correct probability
distribution for the fit parameters. If this is activated, in addition to randomly choosing data set
ensembles, the priors will be choosen randomly from Gaussian distributions with the given prior widths
and central values.

4.6.7 Multifit

The “Tools”menu contains an entry “Multifit”. When clicking on this, QMBF will performN successive
fits, where the nth fit uses the following definition of χ2:

χ2
n(a) =

∑
(m,k),(m′,k′)

W(m,k),(m′,k′)

[
y(n, m, k)− fk(xm,a)

] [
y(n, m′, k′)− fk′(xm′ ,a)

]

+
P∑

p=1

(ap −Ap)
2

σ2
Ap

. (20)

Compared to the standard definition of χ2 in Eq. (5), here the average of the data, y(m, k), has been
replaced by the nth data sample, y(n, m, k). QMBF will write the N different fit results for each
parameter into an individual file located in the specified output directory. The files are named after
the current .mbf session file and the parameter names. When the “multifit” procedure is completed,
the 68% widths of the fit parameter distributions will be calculated.

The “Multifit” option is useful when the data y(n, m, k) themselves were obtained through a
bootstrap procedure (where n is the nth bootstrap ensemble), and a corresponding resampling of the
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fit results is wanted. Note that the covariance matrix in Eq. (20) stays fixed and is computed as before
from all data samples.

For Bayesian fitting, it is recommended to activate the option “Use Gaussian random priors for
bootstrap / multifit” in the “Fit Settings” Tab, in order to get the (approximately) correct probability
distribution for the fit parameters. If this is activated, the priors for each fit be choosen randomly from
Gaussian distributions with the given prior widths and central values.

4.6.8 Other Tools

The “Tools” menu (and the corresponding buttons in the toolbar) provides some additional useful
functionality:

• set the central values of the parameter priors equal to the start values

• set the central values of the parameter priors equal to the previous fit results

• set the parameter start values equal to the previous fit results

• compute the χ2/dof for the current parameter start values

• reload the data file (use if the data file was modified by an external program while QMBF is
running)

• show a report with the current fit settings (opens in new window and can be saved to a text file)

• write the fit results and the complete parameter covariance matrix to files in the output directory

4.7 Data and Function Plotting

The “Plot” menu (and the corresponding buttons in the toolbar) allow the automated execution
of the plotting program “Grace” (see http://plasma-gate.weizmann.ac.il/Grace/) to generate two-
dimensional plots of:

• the averaged data only

• the averaged data and the model function evaluated for the start values of the parameters

• the averaged data and the model function evaluated for the fitted values of the parameters

• an effective mass plot, showing the fitted ground state energy (for 2-point functions)

Invoking the plotting generates a Grace input file in the output directory, and executes Grace. Under
“Plot → Options...” some settings for the plotting procedure can be entered.

5 MBF

5.1 Compiling MBF

Requirements:

• GNU Scientific Library, version ≥ 1.13 (see http://www.gnu.org/software/gsl/). Note that the
development package is also needed (these usually have -dev or -devel in the package name).

A Makefile is supplied with the source code; the variables INCPATH and LIBS may require adjustment
for the specific machine.
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5.2 Using MBF

MBF is run from the terminal; it requires as command line argument the name of a complete .mbf
session fileas generated by QMBF (below denoted as inputfile). The usage is as follows:

MBF [options] inputfile

Options:

-b perform bootstrap

MBF always reads the input file and performs a fit; the results are printed to stdout. Additionally
the central values and complete covariance matrix of the resulting fit parameters are written to files
created in the output directory specified in the .mbf file. With the option -b, MBF performs the
bootstrap procedure and writes the results for each parameter into an individual file created in the
output directory specified in the .mbf file.

A Predefined Model Functions

A.1 2-Point Correlator

A.1.1 Multiple Exponentials

• function(s):

f(t) = A

[
e−E t +

N−1∑
n=1

B n e−(E+dE 1+...+dE n)t

]

• variable(s): t

• parameter(s): A, {B n}, E, {dE n}

A.1.2 Multiple Exponentials with Exponential Energies

• function(s):

f(t) = A

[
e−eE t +

N−1∑
n=1

B n e−(eE+edE 1+...+edE n)t

]

• variable(s), parameter(s): same as in Sec. A.1.1

A.1.3 Multiple Exponentials with Square Amplitudes

• function(s):

f(t) = A2

[
e−E t +

N−1∑
n=1

(B n)2 e−(E+dE 1+...+dE n)t

]

• variable(s), parameter(s): same as in Sec. A.1.1

14



A.1.4 Multiple Exponentials with Square Amplitudes and Exponential Energies

• function(s):

f(t) = A2

[
e−eE t +

N−1∑
n=1

(B n)2 e−(eE+edE 1+...+edE n)t

]

• variable(s), parameter(s): same as in Sec. A.1.1

A.1.5 Multiple (incl. oscillating) Exponentials

• function(s):

f(t) = A

[
e−E t +

N−1∑
n=1

B n e−(E+dE 1+...+dE n)t

]

+(−1)t+1Ao

[
e−Eo t +

M−1∑
m=1

Bo m e−(Eo+dEo 1+...+dEo m)t

]

• variable(s): t

• parameter(s): A, {B n}, E, {dE n}, Ao, {Bo m}, Eo, {dEo m}

A.1.6 Multiple (incl. oscillating) Exponentials with Exponential Energies

• function(s):

f(t) = A

[
e−eE t +

N−1∑
n=1

B n e−(eE+edE 1+...+edE n)t

]

+(−1)t+1Ao

[
e−eEo t +

M−1∑
m=1

Bo m e−(eEo+edEo 1+...+edEo m)t

]

• variable(s), parameter(s): same as in Sec. A.1.5

A.1.7 Multiple (incl. oscillating) Exponentials with Square Amplitudes

• function(s):

f(t) = A2

[
e−E t +

N−1∑
n=1

(B n)2 e−(E+dE 1+...+dE n)t

]

+(−1)t+1Ao 2

[
e−Eo t +

M−1∑
m=1

(Bo m)2 e−(Eo+dEo 1+...+dEo m)t

]

• variable(s), parameter(s): same as in Sec. A.1.5
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A.1.8 Multiple (incl. oscillating) Exponentials with Square Amplitudes and Exponential
Energies

• function(s):

f(t) = A2

[
e−eE t +

N−1∑
n=1

(B n)2 e−(eE+edE 1+...+edE n)t

]

+(−1)t+1Ao2

[
e−eEo t +

M−1∑
m=1

(Bo m)2 e−(eEo+edEo 1+...+edEo m)t

]
• variable(s), parameter(s): same as in Sec. A.1.5

A.2 2-Point Correlator, Vector Fit

All the “scalar” two-point models listed in section A.1 are also available as “vector” two-point models.
These models require the dimension dim of the vector. A vector model has then dim functions fi(t)
(i = 1...dim) of the same form as the underlying scalar model. These functions have individual
amplitude parameters, but share all the energy parameters. For example, the functions for multi_-
exp_vec_model are

fi(t) = A i

[
e−E t +

N−1∑
n=1

B n i e−(E+dE 1+...+dE n)t

]
for i = 1...dim.

A.3 Periodic B.C.

All the “scalar” and “vector” two-point models listed in A.1 and A.2 are also available with periodic
boundary conditions. The models with periodic boundary conditions have the same parameters as the
underlying models. The only difference is the replacement

fi(t) → fi(t) + fi(T− t)

for all functions fi of the model, where T is a constant.

A.4 Two-point models with time-independent contributions

For all the “scalar” and “vector” two-point models listed in A.1 and A.2, as well as their versions with
periodic boundary conditions (Sec. A.3), an additional version exists, which adds time-independent
pieces to the fit function:

f(t) → f(t) + C

for scalar models,
f(t) → f(t) + C+ (−1)t+1Co

for scalar models with oscillating contributions,

fi(t) → fi(t) + C i

for vector models, and
fi(t) → fi(t) + C i+ (−1)t+1Co i

for vector models with oscillating contributions. The quantities C, Co, {C i}, {Co i} (as appropriate)
are additional fit parameters.
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A.5 2-Point Correlator, Matrix Fit

Matrix models are very different from vector models. In matrix models, it is assumed that the ampli-
tudes factor into an outer product of a vector with itself, like A i A j, where the A i are used as fit
parameters.

In the following, the functions are labelled by two indices i, j. The required storage order in the
data files is such that the first index (i) runs slow and the second index (j) runs fast.

A.5.1 Multiple Exponentials

• function(s): for i = 1...dim_1, j = 1...dim_2:

fij(t) = A i A j

[
e−E t +

N−1∑
n=1

B n i B n j e−(E+dE 1+...+dE n)t

]

• variable(s): t

• parameter(s): {A i}, {B n i} (for i = 1...max(dim_1, dim_2)), E, {dE n}

A.5.2 Multiple Exponentials with Exponential Energies

• function(s): for i = 1...dim_1, j = 1...dim_2:

fij(t) = A i A j

[
e−eE t +

N−1∑
n=1

B n i B n j e−(eE+edE 1+...+edE n)t

]

• variable(s), parameter(s): same as in Sec. A.5.1

A.5.3 Multiple (incl. oscillating) Exponentials

• function(s): for i = 1...dim_1, j = 1...dim_2:

fij(t) = A i A j

[
e−E t +

N−1∑
n=1

B n i B n j e−(E+dE 1+...+dE n)t

]

+(−1)t+1Ao i Ao j

[
e−Eo t +

M−1∑
m=1

Bo m i Bo m j e−(Eo+dEo 1+...+dEo m)t

]

• variable(s): t

• parameter(s):

{A i}, {B n i} (for i = 1...max(dim_1, dim_2)), E, {dE n},
{Ao i}, {Bo m i} (for i = 1...max(dim_1, dim_2)), Eo, {dEo m},
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A.5.4 Multiple (incl. oscillating) Exponentials with Exponential Energies

• function(s): for i = 1...dim_1, j = 1...dim_2:

fij(t) = A i A j

[
e−eE t +

N−1∑
n=1

B n i B n j e−(eE+edE 1+...+edE n)t

]

+(−1)t+1Ao i Ao j

[
e−eEot +

M−1∑
m=1

Bo m i Bo m j e−(eEo+edEo 1+...+edEo m)t

]

• variable(s), parameter(s): same as in Sec. A.5.3

A.6 Matrix two-point models, type II

In type II matrix models, the ground state is not special. All amplitudes, including the ground-
state amplitude, are written as a product A i B n i (i.e., n now starts from 0). This means that
max(dim_1, dim_2) of the parameters {B n i} are redundant, and Bayesian constraints must be acti-
vated. The typical usage is to constrain the parameters B (i − 1) i to 1 ± ϵ with a very small prior
width ϵ, which effectively eliminates these parameters from the functions.

A.6.1 Multiple Exponentials

• function(s): for i = 1...dim_1, j = 1...dim_2:

fij(t) = A i A j

N−1∑
n=0

B n i B n j e−(E+...+dE n)t

• variable(s): t

• parameter(s): {A i}, {B n i} (for i = 1...max(dim_1, dim_2)), E, {dE n}

• properties:

Key content type

n_exp N integer ≥ 1
A_name A string
B_name B string
E_name E string
dE_name dE string
t_name t string
dim_1 i = 1...dim_1 integer ≥ 1
dim_2 j = 1...dim_2 integer ≥ 1

A.6.2 Multiple Exponentials with Exponential Energies

• function(s): for i = 1...dim_1, j = 1...dim_2:

fij(t) = A i A j
N−1∑
n=0

B n i B n j e−(eE+...+edE n)t
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• variable(s), parameter(s), properties: same as in Sec. A.6.1

A.7 Triangular matrix two-point models

These models are like matrix models with dim_1=dim_2, but the triangular models consist of only the
functions with j ≥ i. This is intended for matrix fits with exactly symmetric (i.e. symmetrized) data.

A.7.1 Multiple Exponentials

• function(s): for i = 1...dim, j = i...dim (total number of functions = dim(dim+ 1)/2):

fij(t) = A i A j

[
e−E t +

N−1∑
n=1

B n i B n j e−(E+dE 1+...+dE n)t

]

• variable(s): t

• parameter(s): {A i}, {B n i} (for i = 1...dim), E, {dE n}

• properties:

Key content type

n_exp N integer ≥ 1
A_name A string
B_name B string
E_name E string
dE_name dE string
t_name t string
dim i = 1...dim, j = i...dim integer ≥ 1

A.7.2 Multiple Exponentials with Exponential Energies

• function(s): for i = 1...dim, j = i...dim (total number of functions = dim(dim+ 1)/2):

fij(t) = A i A j

[
e−eE t +

N−1∑
n=1

B n i B n j e−(eE+edE 1+...+edE n)t

]

• variable(s), parameter(s), properties: same as in Sec. A.7.1

A.8 Triangular matrix two-point models, type II

These models are like type II matrix models with dim_1=dim_2, but the triangular models consist of
only the functions with j ≥ i. This is intended for matrix fits with exactly symmetric (i.e. symmetrized)
data.
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A.8.1 Multiple Exponentials

Note: some parameters are redundant (see Sec. A.6).

• function(s): for i = 1...dim, j = i...dim (total number of functions = dim(dim+ 1)/2):

fij(t) = A i A j
N−1∑
n=0

B n i B n j e−(E+...+dE n)t

• variable(s): t

• parameter(s): {A i}, {B n i} (for i = 1...max(dim_1, dim_2)), E, {dE n}

• properties:

Key content type

n_exp N integer ≥ 1
A_name A string
B_name B string
E_name E string
dE_name dE string
t_name t string
dim i = 1...dim, j = i...dim integer ≥ 1

A.8.2 Multiple Exponentials with Exponential Energies

Note: some parameters are redundant (see Sec. A.6).

• function(s): for i = 1...dim, j = i...dim (total number of functions = dim(dim+ 1)/2):

fij(t) = A i A j
N−1∑
n=0

B n i B n j e−(eE+...+edE n)t

• variable(s), parameter(s), properties: same as in Sec. A.8.1

A.9 2-Point Correlator, Non-symmetric Matrix Fit

Here the amplitudes are factorized into an outer product of two different vectors, rather than the outer
product of a vector with itself, as in the models of Sec. A.5. Because of a reparametrization invariance,
some amplitude parameters need to be eliminated to get unique results. This has already been done
in the following models, so that the fit functions are different for i = 1 vs i > 1 (see below).

As in Sec. A.5, the required storage order in the data files is such that the first index (i) runs slow
and the second index (j) runs fast.
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A.9.1 Multiple Exponentials

• function(s):

for i = 2...dim_1, j = 1...dim_2:

fij(t) = Ax i Ay j

[
e−E t +

N−1∑
n=1

Bx n i By n j e−(E+dE 1+...+dE n)t

]

for i = 1, j = 1...dim_2:

f1j(t) = Ay j

[
e−E t +

N−1∑
n=1

By n j e−(E+dE 1+...+dE n)t

]

• variable(s): t

• parameter(s): {Ax i, Bx n i} (for i = 2...dim_1), {Ay j, By n j} (for j = 1...dim_2), E, {dE n}

A.9.2 Multiple Exponentials with Exponential Energies

• function(s):

for i = 2...dim_1, j = 1...dim_2:

fij(t) = Ax i Ay j

[
e−eE t +

N−1∑
n=1

Bx n i By n j e−(eE+edE 1+...+edE n)t

]

for i = 1, j = 1...dim_2:

f1j(t) = Ay j

[
e−eE t +

N−1∑
n=1

By n j e−(eE+edE 1+...+edE n)t

]

• variable(s), parameter(s): same as in Sec. A.9.1

A.9.3 Multiple (incl. oscillating) Exponentials

• function(s):

for i = 2...dim_1, j = 1...dim_2:

fij(t) = Ax i Ay j

[
e−E t +

N−1∑
n=1

Bx n i By n j e−(E+dE 1+...+dE n)t

]

+(−1)t+1 Aox i Aoy j

[
e−Eo t +

M−1∑
m=1

Box m i Boy m j e−(Eo+dEo 1+...+dEo m)t

]

for i = 1, j = 1...dim_2:
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f1j(t) = Ay j

[
e−E t +

N−1∑
n=1

By n j e−(E+dE 1+...+dE n)t

]

+(−1)t+1 Aoy j

[
e−Eo t +

M−1∑
m=1

Boy m j e−(Eo+dEo 1+...+dEo m)t

]

• variable(s): t

• parameter(s): {Ax i, Bx n i} (for i = 2...dim_1), {Ay j, By n j} (for j = 1...dim_2), E, {dE n},
{Aox i, Box m i} (for i = 2...dim_1), {Aoy j, Boy m j} (for j = 1...dim_2), Eo, {dEo n}

A.9.4 Multiple (incl. oscillating) Exponentials with Exponential Energies

• function(s):

for i = 2...dim_1, j = 1...dim_2:

fij(t) = Ax i Ay j

[
e−eE t +

N−1∑
n=1

Bx n i By n j e−(eE+edE 1+...+edE n)t

]

+(−1)t+1 Aox i Aoy j

[
e−eEo t +

M−1∑
m=1

Box m i Boy m j e−(eEo+edEo 1+...+edEo m)t

]

for i = 1, j = 1...dim_2:

f1j(t) = Ay j

[
e−eE t +

N−1∑
n=1

By n j e−(eE+edE 1+...+edE n)t

]

+(−1)t+1 Aoy j

[
e−eEo t +

M−1∑
m=1

Boy m j e−(eEo+edEo 1+...+edEo m)t

]

• variable(s), parameter(s): same as in Sec. A.9.3

A.10 3-Point Correlator

A.10.1 Multiple Exponentials

• function(s):

f(t, T) = A

[
e−F te−E(T−t) +

∑
n = 0 ... N − 1,
n′ = 0 ... N ′ − 1,
(n, n′) ̸= (0, 0)

B n′ n e−(F+dF 1+...+dF n′)t e−(E+dE 1+...+dE n)(T−t)

]

• variable(s): t, T

• parameter(s): A, {B n′ n}, E, {dE n}, F, {dF n′}
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A.10.2 Multiple Exponentials with Exponential Energies

• function(s):

f(t, T) = A

[
e−eFte−eE(T−t) +

∑
n = 0 ... N − 1,
n′ = 0 ... N ′ − 1,
(n, n′) ̸= (0, 0)

B n′ n e−(eF+edF 1+...+edF n′
)t e−(eE+edE 1+...+edE n)(T−t)

]

• variable(s), parameter(s): same as in Sec. A.10.1

A.10.3 Multiple (incl. oscillating) Exponentials

• function(s):

For M > 0 and M ′ > 0:

f(t, T) = Aee

[
e−F te−E(T−t) +

∑
n = 0 ... N − 1,
n′ = 0 ... N ′ − 1,
(n, n′) ̸= (0, 0)

Bee n′ n e−(F+dF 1+...+dF n′)t e−(E+dE 1+...+dE n)(T−t)

]

+ (−1)t Aoe

[
e−Fo te−E(T−t) +

∑
n = 0 ... N − 1,
m′ = 0 ... M ′ − 1,
(n,m′) ̸= (0, 0)

Boe m′ n e−(Fo+dFo 1+...+dFo m′)t e−(E+dE 1+...+dE n)(T−t)

]

+ (−1)(T−t) Aeo

[
e−F te−Eo(T−t) +

∑
m = 0 ... M − 1,
n′ = 0 ... N ′ − 1,
(m,n′) ̸= (0, 0)

Beo n′ m e−(F+dF 1+...+dF n′)t e−(Eo+dEo 1+...+dEo m)(T−t)

]

+ (−1)T Aoo

[
e−Fo te−Eo(T−t) +

∑
m = 0 ... M − 1,
m′ = 0 ... M ′ − 1,
(m,m′) ̸= (0, 0)

Boo m′ m e−(Fo+dFo 1+...+dFo m′)t e−(Eo+dEo 1+...+dEo m)(T−t)

]

Note: for M ′ = 0, the second and fourth row disappear.

for M = 0, the third and fourth row disappear.

• variable(s): t, T

• parameter(s):

Aee, {Bee n′ n}, E, {dE n}, F, {dF n′}
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For M > 0 also Aeo, {Beo n′ m}, Eo, {dEo m}

For M ′ > 0 also Aoe, {Boe m′ n}, Fo, {dFo m′}

For (M > 0 and M ′ > 0) also Aoo, {Boo m′ m}

A.10.4 Multiple (incl. oscillating) Exponentials with Exponential Energies

• function: same as in Sec. A.10.3, but with the following replacements:

E → eE

dE_n → edE_n

F → eF

dF_n′ → edF_n
′

Eo → eEo

dEo_m → edEo_m

Fo → eFo

dFo_m′ → edFo_m
′

• variable(s), parameter(s): same as in Sec. A.10.3

A.11 3-Point Correlator, Vector Fit

The “scalar” three-point models listed in section A.10 are also available as “vector” three-point models.
These models require the dimension dim of the vector. A vector model has then dim functions fi(t)
(i = 1...dim) of the same form as the underlying scalar model. These functions have individual
amplitude parameters, but share all the energy parameters. For example, the functions for threept_-
multi_exp_vec_model are

fi(t, T) = A i

[
e−F te−E(T−t) +

∑
n = 0 ... N − 1,
n′ = 0 ... N ′ − 1,
(n, n′) ̸= (0, 0)

B n′ n i e−(F+dF 1+...+dF n′)t e−(E+dE 1+...+dE n)(T−t)

]

for i = 1...dim.
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